

Year 12 Mathematics Specialist 3,4 Test 2, 2021

Section 1 Calculator Free Vectors in 3D

CTIID	ENT'S	NI A	MIC

Solutions

(PRE3SER)

DATE: Wednesday 12 May

TIME: 20 minutes

MARKS: 20

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (3 marks)

Solve the system of equations

$$x + y + z = 4$$

$$2x - y + z = 0$$

$$3x + y + z = 8$$

$$y = 3$$

Now
$$x + g + z = q$$

$$\Rightarrow$$
 $x=2$

2. (8 marks)

Consider the following three planes:

$$2x-y+2z=4 \qquad -1$$

$$x+y-2z=3 \qquad -2$$

$$x-2y+kz=m \qquad -3$$

The system of equation has infinite solutions.

(a) Determine the values of k and m

Vector Infinite solhs
$$\rightarrow$$
 plane is a \sqrt{k} linear combination $\sqrt{m} = \sqrt{3} = (1) - (2)$

b = 4 m = 1

[3]

Give a geometric interpretation of the solution for this system of equations for different (b) values of m.

$$\sqrt{m=1}$$

$$\sqrt{m+1}$$

(c) Determine the vector equation of the line where the three planes intersect. [3]

Let
$$z = \lambda$$

Now
$$-3y + 6\lambda = -2$$

$$= y = \frac{2}{3} - 2\lambda$$

$$\mathcal{L} = \begin{pmatrix} 7/3 \\ 2/3 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$$

Now 2x - y + 2z = 41/20 222 = 4-21 + = +21 $SC = \frac{14}{6}$ I vector egn

3. (9 marks)

Consider a particle whose position as a function of time is given by

$$\underline{r}(t) = \begin{pmatrix} 4 + 2\sin(2t) \\ 2 + 2\cos(2t) \end{pmatrix}$$

(a) Prove the velocity of the particle is always tangential to its position vector. [3]

$$V(t) = (4\cos 2t)$$

$$V(t)$$

(b) Draw a sketch of the path of the particle and indicate the direction of motion.

[3]

(c) Determine an expression for the total distance travelled by the particle between time a and time b.

dist =
$$\int_{a}^{b} | v(t) | dt$$

$$= \int_{a}^{b} \sqrt{(4\cos 2t)^{2} + (-4\sin 2c)^{2}} dt$$

$$= \int_{a}^{b} 4 dt$$

$$= 4b - 4a$$

Verpensiv

Varphfild

Page 3 of 3

Year 12 Mathematics Specialist 3,4 Test 2 2021

Section 2 Calculator Assumed Vectors in 3D

STUDENT'S NAME	

DATE: Wednesday 12 May TIME: 30 minutes

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

This page has been left blank intentionally

MARKS: 31

4. (NO marks)

Two radio-controlled model planes take off at the same time from two different positions and with constant velocities. Model A leaves from the point with position vector $(-3\underline{i}-7\underline{j})$ metres and has velocity $(5\underline{i}-\underline{j}+2\underline{k})$ m/s; model B leaves from the point with position vector $(7\underline{i}-\underline{j}-8\underline{k})$ metres and has velocity $(3\underline{i}-4\underline{j}+6\underline{k})$ m/s.

(a) Determine the distance between the two model planes after 1 second of flight. [3]

$$\int_{A} (1) = \begin{pmatrix} -3 \\ -7 \\ 0 \end{pmatrix} + \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -8 \\ 2 \end{pmatrix}$$

$$\int_{A} (1) = \begin{pmatrix} 7 \\ -1 \\ -8 \end{pmatrix} + \begin{pmatrix} 3 \\ -4 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 10 \\ -5 \\ 2 \end{pmatrix}$$

$$\int_{A} (1)$$

$$dist = \left| \mathcal{L}_{3}(1) - \mathcal{L}_{3}(1) \right|$$

$$= \left| \begin{pmatrix} -8 \\ -3 \\ 4 \end{pmatrix} \right|$$

$$= \sqrt{89} \quad \text{or} \quad 9.43 \text{ m}$$

$$V distance$$

- (b) Determine:
 - (i) an expression, in term of t, for the displacement between model plane A and model plane b. [1]

$$= \begin{pmatrix} -10 \\ -6 \\ 8 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$$

(ii) the shortest distance between the two model planes.

$$dist = \sqrt{(-10 + 26)^2 + (-6 + 36)^2 + (8 - 46)^2}$$

$$mn \ value = 30 \sqrt{29} \quad or \quad 5.57 \ \sqrt{29}$$

$$E = \frac{70}{29}$$
 or 2.41

(iii) the time when this occurs.

[1]

[3]

5. (10 marks)

The path of a toy race car on a racetrack is shown below. The race car moves so that its position vector $\underline{r}(t)$ is given by $\underline{r}(t) = \begin{pmatrix} 2 - 2\cos(t) \\ 1 - \sin(2t) \end{pmatrix}$ metres, where t is the number of seconds the particle has been in motion.

(a) Determine the starting position of the race car and mark this as point S in the diagram above. [1]

$$\zeta(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

(b) Determine the initial velocity of the race car and indicate this on the diagram above.

$$V(E) = \begin{pmatrix} 2\sin t \\ -2\cos 2E \end{pmatrix}$$

$$\varphi(0) = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$$

(c) Determine the Cartesian equation for the path of the race car.

$$\Rightarrow$$
 $\frac{x-z}{z} = cost$

$$-3 \quad 2-x = cost$$

$$\begin{array}{c|c}
& & & & & \\
& & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

$$y = 1 - \sin 2t$$

$$= 1 - 2\sin t \cos t$$

$$= 1 - 2\sin t$$

$$= 1 - 2\sin t \cos t$$

$$= 1 - 2\cos t$$

$$= 1 - 2\cos t \cos t$$

$$= 1 - 2\cos t$$

$$=$$

But, this is only

(d) Determine the distance the race car travels in completing one circuit of the racetrack.

[3]

Back at stat when
$$x = 0$$

$$= 0, 2\pi, 4\pi, \dots$$

6. (11 marks)

A ball rolls off a table with a speed of 60 cm/s. The table is 1 m high. The ball undergoes acceleration due to gravity of $\underline{a}(t) = \begin{pmatrix} 0 \\ -0 \\ R \end{pmatrix} m/s^2$

Determine the point at which the ball hits the floor and determine the speed at the (a) instant.

$$V(\xi) = \begin{pmatrix} -9.8\xi \end{pmatrix} + \zeta$$

$$\cdot \cdot \cdot = \left(0.6 \atop -9.86\right)$$

$$f(t) = \begin{pmatrix} 0.6t \\ 4.9t^2 \end{pmatrix} + d \quad \text{but } f(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\mathcal{L}(\epsilon) = \begin{pmatrix} 0.6\epsilon \\ -4.9\epsilon^2 + 1 \end{pmatrix}$$

$$\Rightarrow \quad \xi = \pm \frac{\sqrt{10}}{7} \quad , \quad 80 \quad \frac{\sqrt{10}}{7}$$

$$\mathcal{L}\left(\begin{array}{c}
\sqrt{3} \\
\sqrt{3}
\end{array}\right) = \left(\begin{array}{c}
3\sqrt{10} \\
0
\end{array}\right)$$

$$=\begin{pmatrix}0.271\\0\end{pmatrix}$$
 m

$$\varphi(0) = \begin{pmatrix} 0.6 \\ 0 \end{pmatrix} \quad \text{cm/s}$$

[5]

but
$$V(0) = \begin{pmatrix} 0.6 \\ 0 \end{pmatrix}$$

$$\Gamma\left(\begin{array}{c}
\sqrt{50} \\
9
\end{array}\right) = \begin{pmatrix}
3\sqrt{50} \\
3\sqrt{5}
\end{pmatrix}$$

$$\begin{array}{c}
\sqrt{499} \\
5
\end{pmatrix}$$

$$\begin{array}{c}
\sqrt{50} \\
\sqrt{9}
\end{array}\right) = \sqrt{499} \\
5$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{499} \\
6
\end{array}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{499} \\
6$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{499} \\
6$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{499} \\
6$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{499} \\
6$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{499} \\
6$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{499} \\
6$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{9}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{9}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{9}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{9}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{9}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{9}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{9}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{9}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt{9} \\
\sqrt{9} \\
\sqrt{9}
\end{array}\right) = \sqrt{9}$$

$$\begin{array}{c}
\sqrt{9} \\
\sqrt$$

(b) Determine the angle θ between the path of the ball and a vertical line drawn through the point of impact. [3]

(c) Suppose the ball rebounds from the floor at the same angle with which it hits the floor but loses 20% of its speed due to energy absorbed by the ball on impact. Where does the ball strike the floor on the second bounce? [3]

New speed 80% of
$$\frac{5499}{5} = \frac{4\sqrt{499}7}{25}$$

assumming new coordinate system yields

 $f(t) = \begin{pmatrix} 4\sqrt{499} & \sin(7.72^\circ) + t \\ 4\sqrt{495} & \cos(7.72^\circ) + t - 4.9 + 2 \end{pmatrix}$
 $f(t) = \begin{pmatrix} 4\sqrt{495} & \cos(7.72^\circ) + t - 4.9 + 2 \end{pmatrix}$

Solving when $f(t) = \int_{-\infty}^{\infty} \cos(7.72^\circ) + t - 4.9 + 2 \int_{-\infty}^{\infty} \cos(7.72^\circ) + t - 4$

02

0,27

but 80% in 20

- 2nd boune = 0.27 + 0.8 × 0.27 × 2 Page 7 of 7